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ABSTRACT 

Precise and functional phenotyping is a limiting factor for crop genetic improvement. However, because of its ease of 

application, imagery-based phenomics represents the next breakthrough for improving the rates of genetic gains in field crops. 

Currently, crop breeders lack the know-how and computational tools to include such traits in breeding pipelines. A fully 

automatic user-friendly data management together with a more powerful and accurate interpretation of results should increase 

the use of field high throughput phenotyping platforms (HTPPs) and, therefore, increasing the efficiency of crop genetic 

improvement to meet the needs of future generations. 

The aim of this study is to generate a methodology to high throughput phenotyping based on temporal multispectral imagery 

(MSI) collected from Unmanned Aerial Systems (UAS) in soybean crops. In this context, ‘Triple S’ (Statistical computing of 

Segmented Soybean multispectral imagery) is developed as an open-source software tool to statistically analyze the pixel 

values of soybean end-member and to compute canopy cover area, number and length of soybean rows from georeferenced 

multispectral images. During the growing season of 2017, a soybean experiment was carried out at the Agronomy Center for 

Research and Education (ACRE) in West-Lafayette (Indiana, USA). Periodic images were acquired by Parrot Sequoia 

Multispectral sensor on board senseFly eBee. 

The results confirm the feasibility of the proposed methodology, providing scalability to a comprehensive analysis of crop 

extension and affording a constant operational improvement and proactive management.  
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1. INTRODUCTION 

Recent advances in sensor technology, Unmanned Aerial Systems (UASs) and computing processes promote exponential 

growth in remote sensing applications. Regarding the acquisition platform, equipped with multiple imaging sensors, autopilots 

and GNSS / IMU (Global Navigation Satellite System / Inertial Measurement Unit), UASs have become one of the most viable 

remote sensing tools offering great possibilities for precision agriculture [1] and high-throughput phenotyping [2]. One of these 

breakthrough is automated high-throughput crop phenotyping using low-cost aerial images for estimating biophysical and 

biochemical plant parameters [3], capable to assist in decision making for genetic inference and selection of phenotypes of 

extensive crop areas. Computer vision systems are highly suitable for this purpose because they are a non-contact and non-

destructive technique [4]. The application scenarios of digital image analysis and 3D modelling cover yield estimation, quality 

evaluation, disease detection and phenology [5]. 

Various agronomic parameters and phenotypic traits have been reported in previous studies based on the sensors on board 

UASs. For instance, low-cost multispectral sensors in VIS and Near Infrared (NIR) allow extraction of both physiological and 

geometric properties of vegetation [6] as well as accurate estimation of chlorophyll content, N concentration and yield for a 

variety of crops [7]. The explanation is clear: the spectral signature of a given crop is directly related to its phenological, 



 

physiological and morphological characteristics, such that any change in the plant will also disturb its reflectance [8]. These 

differences in the intrinsic spectral behaviour of each species allow their discrimination and mapping by analysis techniques 

and digital classification. Moreover, RGB images were used to accurately estimate vegetation index by deep neural network 

[9]. In addition, thermal sensors provide plant canopy temperature, which has been used to detect water stress [10]. Concretely, 

in row crops, such as corn and soybean, canopy temperature during seed fill is an important indicator of crop health and yield 

potential.  

In this research, a fully automatic photogrammetric pipeline is used to process the data via two main steps: first, the automatic 

determination of the view of each image; second, the automatic computation of the 3D coordinates for the generation of a 

dense and scaled 3D model of the scene and the subsequently orthomosaic. Subsequently, vegetation index mapping is 

computed in order to show the potential of multispectral calibrated images in agronomy. After that, ‘Triple S’ (Statistical 

computing of Segmented Soybean multispectral imagery) is applied to statistically analysis the pixel values of soybean end-

member by filtering the image through k-means clustering. Moreover, canopy cover area, number and length of soybean rows 

is calculated by extracting the edge map via canny algorithm and using PCA (Principal Component Analysis). 

The paper is organized as follow: after this brief introduction, the employed materials and the proposed methodology are 

described. Subsequently, the results with a proper discussion are presented. To finalize, an outlook pointing out the conclusions 

is summarized.   

2. MATERIALS  

The employed equipment for the data acquisition is described: 

● A GNSS device from TopCon to georeference the Ground Control Points (GCP). 
 

● A general purpose GER 1500 spectroradiometer to acquire spectral measurements of the calibration targets. The main 

technical specifications are described in Table 1. 
 

Table 1. Technical specifications of the GER 1500 Spectroradiometer. 

Parameter Value 

Spectral range 350-1050 nm 

Spectral Channels 512 

Spectral resolution 1.5 nm 

Field of view 4º std 

Shooting time 1 s 

 

● A four narrowband passive sensor: Parrot Sequoia Multispectral sensor. The camera specifications and filters are 

detailed in Table 2 and 3. It has a global shutter to avoid problems in data processing [11] and it is self-calibrate by 

using the incorporated Sunshine sensor. 

Table 2. Technical specifications of the Parrot Sequoia Multispectral sensor. 

Parameter Value 

Spectral range 350-2500 nm 

Shooting time 0.1 s 

Spectral resolution 1 nm 

Field of view 25º 

 



 

Table 3. Channel specifications of the narrowband Parrot Sequoia Multispectral sensor. 

Channel Band λmean [nm] Bandwidth [nm] 

1 Green 550 40 

2 Red 660 40 

3 Red-edge 735 10 

4 Near infrared 790 40 

 

● The senseFly eBee, designed as a fixed wing UAV for application in precision agriculture with incorporated GPS, 

IMU and magnetometer. It has a weight of 700 g and a payload of 150 g. Parrot Sequoia Multispectral sensor is 

controlled by the senseFly eBee autopilot during the flight. 

3. METHODOLOGY  

The proposed workflow is illustrated in Figure 1. As inputs from the soybean breeding field, multispectral images from UAS 

have to be acquired at the same time as spectral field measurements over reflectance targets to robustly check the reflectance 

values. Moreover, a survey campaign of GCP was done to properly geo-reference the images. Then, the processing starts with 

a low-cost photogrammetric pipeline to get the VI mapping of the plots. Coming up next, Triple S software is run over the data 

plot, computing statistical parameters of the segmented soybean, canopy cover and number and length of each row. This 

process will allow to the breeders to analyze the genetic inference and phenotyping selection of soybean. 

 

Figure 1. Workflow of the proposed methodology. 

3.1. Image processing 

In an attempt to guarantee automation and quality in the image processing, a combination of photogrammetric and computer 

vision techniques is required. Thereby, multispectral dataset are treated using a pipeline based on camera calibration [12], 

image orientation (bundle adjustment), dense point cloud extraction [13] and orthophoto production [14]. The Pix4Dmapper 

software package (Pix4D SA, Lausanne, Switzerland) is used for image processing. Moreover, a topographic survey campaign 

is established to obtain absolute georeferencing and a model scaled through GCPs. These observations are used as well in 

retrieving the camera interior parameters and correcting for any systematic error or block deformation. The Parrot Sequoia 

Multispectral sensor is a self-calibrating system. It incorporates an integrated irradiance sensor that allows irradiance values 

synchronized to the onboard GPS, IMU and magnetometer. The relative influence of the atmosphere is minimal because the 

atmospheric column spanned by the radiation is unimportant and can be neglected in the calculations [15]. To finalize, 

generated orthomosaics for each band are accurately geo-referenced to EPSG 32616, WGS84 CRS and the bands are merged, 

taking into account the parallax, using the Geospatial Data Abstraction Library (GDAL).  

Next step is to compute different vegetation index mapping. These images were processed with algorithms defined in the Red 

and Near Infra-Red bands and their normalization of soil background brightness through an implemented code in GNU Octave 

software. 



 

In order to get useful information about each plot in the field, we need to extract plot level data from the orthomosaic VI image. 

Individual plot boundaries need to be extracted and defined separately from images with an assigned plot ID that defines their 

genomic type by a field-map based plot extraction. In this approach, first we created a KML file from the field map using 

QGIS open source software. The script starts from the top right and builds the first polygon using the defined plot size and 

skips the gap between plots and generates the next one until it gets to the last plot on the bottom left. One advantage is that it 

can be generalized to other crop types as long as the field map is provided and the plots are planted in regular distance and 

have a consistent size within a trial. 

3.2. ‘Triple S’ software (Statistical computing of Segmented Soybean multispectral imagery) 

Once the individual plots are extracted, ‘Triple S’ software (Statistical computing of Segmented Soybean multispectral 

imagery) is running. ‘Triple S’ is an open tool coded  in Python and uses GDAL library and Open Source Computer Vision 

Library [16] running over Anaconda Prompt. From each plot, it generates the following information ordered in an excel sheet 

by the name of the plot file: 

i. Firstly, the image is classified in ground and soybean by k-means clustering [17] using the near infrared band, 

which provides a bigger difference of the spectral response between end-members. The algorithm assigns a 

cluster (k clusters) to each pixel (xi,i=1...n) . K-means is a clustering method that aims to find the positions 

μi,i=1...k of the clusters that minimize the radiance variance (r) from the pixels to the cluster (Equation 1): 

arg 𝑚𝑖𝑛𝑐 ∑ ∑ 𝑑(𝑥, 𝜇𝑖)

𝑥∈𝑐𝑖

𝑘

𝑖=1

= arg 𝑚𝑖𝑛𝑐 ∑ ∑ ||𝑥 − 𝜇𝑖||2
2

𝑥∈𝑐𝑖

                                          (1)

𝑘

𝑖=1

 

where ci is the set of pixels that belong to cluster i. 

Once the image is filtered, the statistical parameters of the pixel-values of soybean end-member are calculated 

(mean, medium and standard deviation).  

ii. In the second step, canopy cover area (m2) is obtained by reading the coordinates in the metadata and relating to 

the number of soybean end-member pixels. 
 

iii. The next step consists on acquiring the number of rows throw an edge map that define if the row is completed. 

Canny algorithm [18] is used to obtain the edge map from the NIR band, in this case. Canny algorithm is a widely 

used edge detection method. It is a multi-step algorithm that consists on smoothing of the image using a Gaussian 

Filter to remove the noise, computing the intensity gradients of the image, double thresholding the image to get 

potential edges and deleting all edges that are not connected to a strong edge. When the edge map is computed, 

left and right side of the row is defined by the orientation. 

 

iv. Finally yet importantly, Principal Component Analysis (PCA) is used [19] to compute the length of each row. 

This statistical analysis uses the first and second moments of the soybean pixels from the same row and results 

in two orthogonal vectors centered on the center of gravity of the row. PCA synthesizes the distribution of pixels 

along the two dimensions and therefore models the principal directions and magnitudes of variation of the pixel 

distribution around the center of gravity. 

The coordinates xi and yi for each pixels i=1,… k from the image of each row is considered. The covariance 

matrix (Σ) (2) of each row (X) is defined by: 

∑ =
(𝑋−𝑋)

𝑇
(𝑋−𝑋)

k
= (

𝜎𝑥
2 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦
2

)                                                       (2) 



 

where (σ2
x, σ2

y) are the variances of the pixel directions and the elements outside the main diagonal of Σ are 

the covariances. 𝑋 contains k copies of the mean of the two coordinates of the row pixels (X). The row length 

is the number of soybean pixels along the first eigenvector of Σ [20]. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

The soybean experiment was carried out at the Agronomy Center for Research and Education (ACRE) during 2017 growing 

season in West-Lafayette (Indiana, USA). Figure 2 locates the study area with an image from RGB UAV data. The study area 

has an extension of 252.4*109.5 m2, consisting of 20 plots in vertical and 48 plots in horizontal, with different sizes depending 

of the number of horizontal rows with the same genotype (4, 8 and 6 rows). The photogrammetric flight configuration was 

with along-and across-track overlap of ca. 75%, adequate to Pix4D software processing. A flight altitude over the ground of 

79 m is obtained by Sensefly software, given the camera focal and the required Ground Sample Distance (GSD). GCPs were 

placed on the ground for scaling, georeferencing and analysis purposes and measured with GNSS. 

 

Figure 2. Location of the study area of soyben crop in West-Lafayette (Indiana, USA) (left) with a detailed zoom from RGB UAV data 

(right).  

Images captured by the Parrot Sequoia Multispectral sensor generate datasets for each flight that included Green, Red, Red 

Edge and NIR information. The analysis of data captured by multispectral cameras requires prior knowledge of the radiometric 

calibration parameters of each channel to obtain correct interpretations [15]. For this reason, at the same time to the aerial data 

acquisition, a radiometric campaign on field was carried out to radiometrically check the calibration of the sensor. Thus, 

calibration targets were placed in the study area and measured by the spectroradiometer. 

Periodic images were acquired by Parrot Sequoia Multispectral sensor on board senseFly eBee, which provides a great 

flexibility to quickly perform vegetation index mapping in high spatial, temporal and spectral resolution. The weather 

conditions on these days were clear and free cloud during noon time, when the flights were done. Data is separately processed 

per band by a photogrammetric pipeline using Pix4D to obtain the orthomosaic required for GIS integration. After that, 

georeferenced index vegetation mapping is performed based on calculation between different bands taking into account the 

parallax and the GCPs. Figure 3 illustrates VI mapping over the study area on July 26, 2017: the Normalized Difference 

Vegetation Index (NDVI) (a), the Soil Adjusted Vegetation Index (SAVI) (b), the Modified Soil Adjusted Vegetation Index 

(MSAVI) (c) and the Generalized Soil Adjusted Vegetation Index (GESAVI) (d). Although the indices addressed here do not 

have the same range of variation, all of them identify the plant trellis in the scene. The darkest plots correspond to non-vegetated 

areas because the plants did not grown.  



 

 

Figure 3. VI mapping on July 26th, 2017 over the study area (DL (499919.5, 4481053.9); UR (500171.9, 4481163.4); EPSG 32616): NDVI 

(a), SAVI (b), MSAVI (c) and GESAVI (d). 

To accurately reflect the actual breeding field planting configuration, a script is developed to overlay defined plot sizes with 

known spacing and eliminating border effect by changing the plot size. This automated plot extraction allows us to analyze 

each breeding plot. Figure 4 illustrates randomly selected plots after the extraction over the study area, consisting of 960 

individual plots with variable size. 

Figure 4. Randomly selected plots from the study area (DL (499919.5, 4481053.9); UR (500171.9, 448116.3); EPSG 32616) and the 4 

particular plots for a deeper analysis. 



 

For each plots, Triple S software is run. 4 plots are selected to present the results, marked in Figure 4, at 4 different 

phenological stages depending on the epoch from the 2017 planting date (May 31st, 2017) to show the results. These 

selected plots correspond to different seed breeding genetics. The image acquisition dates are June 27th, July 14th and 26th 

and August 18th, 2017. Below, the results per band from Triple S of the 4 particular plots at the 4 selected dates are 

summarized in Table 4: mean (ẋi), median (medi) and standard deviation (σxi) value of soybean end-member reflectance 

and unsupervised classification threshold computed for NIR band (band 4). 

Table 4. Results per band from Triple S of the 4 particular plots at selected dates: mean (ẋi), median (medi) and standard deviation 

(σxi) value of soybean end-member reflectance and classification threshold computed for NIR band (band 4). 

Plot 
Date 

(MM/DD) 
ẋ1 ẋ2 ẋ3 ẋ4 med1 med2 med3 med4 σx1 σx2 σx3 σx4 Thr. 

1 

06/27 0.0748 0.0715 0.1910 0.2198 0.0737 0.0716 0.1837 0.2240 0.0091 0.0160 0.0158 0.0181 0.200 

07/14 0.0590 0.0355 0.2455 0.3608 0.0615 0.0369 0.2409 0.3599 0.0068 0.0525 0.0768 0.0768 0.200 

07/26 0.0410 0.0214 0.2522 0.3560 0.0360 0.0215 0.2307 0.3495 0.0054 0.0082 0.0322 0.0527 0.230 

08/18 0.0412 0.0300 0.3176 0.6315 0.0357 0.0298 0.3177 0.6300 0.0042 0.0050 0.0817 0.0816 0.390 

2 

06/27 0.0905 0.0967 0.2130 0.2506 0.0896 0.0924 0.2085 0.2501 0.0137 0.0271 0.0164 0.0188 0.230 

07/14 0.0680 0.0379 0.3032 0.4012 0.0570 0.0319 0.2725 0.4005 0.0068 0.0075 0.0546 0.0822 0.215 

07/26 0.0398 0.0254 0.2632 0.4232 0.0429 0.0230 0.2631 0.4183 0.0055 0.0063 0.0277 0.0429 0.315 

08/18 0.0555 0.0298 0.3189 0.6646 0.0411 0.0312 0.3188 0.6645 0.0069 0.0167 0.0499 0.0992 0.315 

3 

06/27 0.0813 0.0712 0.1802 0.2198 0.0786 0.0734 0.1796 0.2219 0.0066 0.0131 0.0160 0.0204 0.195 

07/14 0.0688 0.0369 0.2422 0.3809 0.0619 0.0332 0.2524 0.3806 0.0072 0.0033 0.0564 0.0725 0.225 

07/26 0.0420 0.0211 0.2766 0.4156 0.0480 0.0241 0.2780 0.4186 0.0052 0.0050 0.0293 0.0444 0.315 

08/18 0.0311 0.0310 0.3541 0.6121 0.0373 0.0311 0.3555 0.6155 0.0046 0.0047 0.0671 0.0470 0.515 

4 

06/27 0.0850 0.0820 0.2003 0.2401 0.0790 0.0741 0.1958 0.2396 0.0087 0.0179 0.0123 0.0170 0.215 

07/14 0.0572 0.0366 0.2625 0.3901 0.0598 0.0342 0.2727 0.3838 0.0056 0.0024 0.0481 0.0552 0.265 

07/26 0.0437 0.0242 0.2900 0.3952 0.0439 0.0244 0.2541 0.3892 0.0044 0.0045 0.0213 0.0332 0.315 

08/18 0.0411 0.0311 0.3323 0.5751 0.0374 0.0334 0.3324 0.5746 0.0051 0.0063 0.0597 0.0451 0.450 

As an analysis, we can see how the outliers influence the values, making a large difference between mean and median value 

but being NIR band (band 4) the most consistent band for vegetal response as expected. The standard deviation represents the 

spatial variability in reflectance with no correlation found along time per band. The threshold is the value obtained using K-

means to mask the soybean member using NIR band (band 4). 

In Table 5, number of pixels, number and length average of detected rows and Canopy Cover per image is summarized. Canopy 

cover is increasing along the time for all plots, same as the row length, where the growing evolution is exemplified. It is worth 

to mention that some holes along the rows are detected and quantified. 

Table 5. Results from Triple S of the 4 particular plots at selected dates: number of pixels and rows and row length and Canopy Cover per 

plot. 

Plot 
Date 

(MM/DD) 

No. 

pixels 

No. 

rows 
Lmean (m) CC (m2) 

1 

06/27 

6320 6 

3.92 

4.03 

4.19 

4.16 

3.69 

07/14 11.54 

07/26 12.13 

08/18 20.16 

2 

06/27 

6320 6 

     3.98     4.59 

07/14      4.09   12.00 

07/26      4.11   13.22 

08/18      4.18   21.45 

3 

06/27 

8374 8 

4.04    5.10 

07/14 3.96   14.51 

07/26 3.99   14.03 

08/18 4.18   19.00 

4 

06/27 

4187 4 

4.01     2.36 

07/14 4.06     6.83 

07/26 4.11     7.71 

08/18 4.14   13.25 



 

 

Figure 5 shows how plot 3 is evolving for selected dates (June 27th, July 14th and 26th and August 18th, 2017) using Triple S 

regarding the edge map and canopy cover computation and quantified. 

 

Figure 5. Plot 3 evolution for selected dates (June 27th, July 14th and 26th and August 18th, 2017) using Triple S software to compute the 

edge map. 

In particular, we compare the 4th plots at July 26th, 2017, to check which plot formed by different genomics generated more 

biomass. Therefore, we use the median reflectance per band to calculate the vegetation index value per plot related to the mean 

productivity and biomass [21]. In Table 6, different vegetation indexes are obtained by the mean reflectance values throw 

‘Triple S’ in the selected times and plots. The mean value classifications for all indexes confirms that plot #2 has a higher 

biomass production, with a NDVI increment of 8% and 20% in GSAVI index regarding the average value from all the plots. 

From a temporal study, plot #4 shows a better development from July 14th to 26th, with a SAVI increment of 23% and a NDVI 

increment of 24%.  

Table 6. Vegetation index values from different plots along the time. 

Plot Date (MM/DD) NDVI SAVI MSAVI GESAVI 

# 1 

27-Jun 0.10 0.07 0.48 -0.01 

14-Jul 0.20 0.16 0.76 0.11 

26-Jul 0.20 0.16 0.78 0.11 

18-Aug 0.33 0.32 0.81 0.36 



 

# 2 

27-Jun 0.09 0.07 0.44 -0.01 

14-Jul 0.19 0.16 0.71 0.11 

26-Jul 0.23 0.20 0.81 0.16 

18-Aug 0.35 0.35 0.80 0.41 

# 3 

27-Jun 0.11 0.07 0.50 0.00 

14-Jul 0.20 0.17 0.76 0.12 

26-Jul 0.20 0.18 0.73 0.13 

18-Aug 0.27 0.27 0.67 0.26 

# 4 

27-Jun 0.10 0.07 0.48 -0.01 

14-Jul 0.17 0.14 0.65 0.08 

26-Jul 0.21 0.18 0.78 0.13 

18-Aug 0.27 0.26 0.73 0.25 

 

After this analysis, we can assure that high temporal and spatial resolution multispectral images from UAS allow crops to be 

monitored for diseases or managing water supply and nutrients, as well as decisions to be made about phenotyping selection.   

5. OUTLOOK 

This paper proves the great potential of UAS to collect multispectral images for soybean phenotyping as a fast, reliable and 

economic resource. Moreover, the proposed framework demonstrates that it is highly feasible to provide relatively accurate 

estimation of plant traits and provide valuable insight for high spatial precision in agriculture, plant stress assessment, genetic 

inference and phenotyping selection. It is worth mentioned that this workflow can be effectively employed for other HTPPs 

and crops planted in breeding nurseries. 

Nevertheless, the UAS approach for precision farming is in constant evolution and represents an extremely dynamic sector. In 

this context, Triple S software (Statistical computing of Segmented Soybean multispectral imagery) is our contribution as a 

new tool for soybean high throughput phenotyping from UAS-based multispectral imagery. 

Future works will address the integration of the obtained phenotyping variables into agronomic models. 
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